
A General Equilibrium Model for Integrated CAV Ridesourcing and Transit Services for 

the Morning Commute 

 
Rong Fan 

Department of Civil and Environmental Engineering 

University of Washington, Seattle, WA, 98195 

Email: rongfan6@uw.edu 

 

Dan MacCabe 

Department of Civil and Environmental Engineering 

University of Washington, Seattle, WA, 98195 

Email: dmccabe@uw.edu 

  

Xuegang (Jeff) Ban (Corresponding Author) 

Department of Civil and Environmental Engineering 

University of Washington, Seattle, WA, 98195 

Email: banx@uw.edu 

 

Word Count: 5849 words + 6 table (250 words per table) = 7349 words 

 

 

Submitted [August 01, 2020] 

  



Fan, MacCabe, and Ban  

2 
 

ABSTRACT 
Commuting congestion increases along side the prosperity of urban cities. With the rapid 

development of ridesourcing services and the advances of the connected and automated vehicles (CAV), 

researchers are seeking innovative approaches to alleviate commuting congestion by integrating CAV-

based ridesourcing and transit services. We propose a general equilibrium model for an integrated, 

multimodal CAV ridesourcing and transit system. Our model captures the economic behaviors and 

interactions of the major players (i.e.. the ridesourcing company and customers) in the commuting 

problem by optimizing the profit of the ridesourcing company and the utility of customers, as well as 

considering the network congestion. Results show that the demand for shared rides and transit are affected 

by the relative costs of different types of travel modes of the integrated system. While transit uses 

generally reduces congestion, ridesharing alone may still cause higher congestion compared with solo 

driving because of the deadhead miles. Our model can systematically investigate the mode choices of 

customers and measure the resulting congestion effect in a multimodal network, which helps bring 

valuable insights to transportation planers, transit agencies, and ridesourcing companies. 

 

Keywords: Integrated Transit, Ridesourcing, Connected and Automated Vehicles, General Equilibrium 

Model  
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1. INTRODUCTION 

Enabled by increasing smartphone uses, ridesourcing companies (e.g., Uber/Lyft/Didi) have made 

remarkable progress on serving urban travel demands through real time matching of drivers and 

customers (1). In New York City, e.g., ridesourcing served 4.2 billion trips in 2018, up from about 2 

billion trips in 2016, which was also more than eight times of the trips served by taxis in 2018 (2). 

Platforms that offer “ridesourcing” (also referred to as “e-hailing” or “ride-hailing” (3)) may also provide 

shared-ride (i.e. “ridesplitting”) services for customers from nearby locations (mostly two), such as Uber 

Pool. In this paper, we use “single rides” or “shared rides” to distinguish ridesourcing services for single 

customer pickups or multiple customer pickups, respectively (4).  

Meanwhile, rapidly evolving vehicle automation technology has the potential to reduce vehicle 

ownership and increase the need for ridesourcing services, which is expected to trigger another revolution 

in urban mobility (5). However, the rapid growth of ridesourcing may inevitably lead to more car travels 

and urban congestion (6, 7). To mitigate such negative impacts, ridesourcing, especially when CAVs are 

widely deployed, has to be properly integrated with public transit in order to provide more accessible and 

efficient means to all travelers in urban areas. 

On-demand transit system, the integration of demand responsive services and transit, has been 

studied and practiced long before the era of ridesourcing. For example, Stein studied the integration of 

Dial a Ride  services with fixed transit routes to solve the first/last mile problem (8), which has been the 

main challenge for many potential transit users. Later on, studies on similar problems showed that the 

integration of on-demand or flexible route services with fixed route transit could reduce the operation cost 

of transit agencies (9, 10). 

The wide deployment of ridesourcing services has inspired research on the integration of 

ridesourcing and transit (11). Chen et al. compared the line-based design and the zone-based design for 

the integration of ridesourcing and transit (12). Their analytical and simulation results both showed that 

line-based services can achieve higher efficiency and allow ridesharing. Ma et al. proposed a ridesharing 

scheme with integrated transit in which ridesourcing serves either the whole trip or the first/last mile of a 

transit route (13). Their objective was to optimize vehicle dispatch and idle vehicles relocation for an 

integrated, multimodal transit-rideshare system. The numerical experiments indicated that the transit-

rideshare system outperforms the rideshare-only system by 32% reduction in user travel time and 64% 

reduction in vehicle travel time. Compared with rideshare-only system, the transit-ridesharing system also 

reduces the operation cost and customer waiting times, and achieves better performance in regions where 

passenger demands are heterogeneous. Pinto et al. proposed a bi-level mathematical programming 

formulation for the joint transit network redesign and mobility service fleet size determination (14). The 

integration in their study was to replace inefficient transit routes/patterns with shared autonomous 

mobility services, while the on-demand first/last mile for transit is not considered. In addition, their model 

only had one objective function to minimize the disutility of customers, with no platform profit 

maximization or congestion consideration. Ban et al. proposed a general equilibrium model that consists 

of the optimization of three main players: service providers, passengers and the network congestion (6). 

Their study provided insights for the transportation planning agencies on the congestion impact of 

ridesourcing. The deadhead miles of either taxi or ridesourcing services generally exacerbate the network 

congestion, but when the demand pattern has high level of symmetry, the deadhead miles can be 

significantly reduced. 

In addition to studies on the operation of the integrated system of transit and ridesourcing, 

researchers also investigated the user experience and preferences of passengers. Yan et al. evaluated 

travelers’ responses to the integrated transit pilot MTransit and showed that ridesourcing could 

complement transit by serving the first/last mile and/or replacing fixed transit routes with low usage, 

leading to reduced passenger waiting times and lower operation costs of transit agencies (15).  

It suffices to say that most studies so far have focused on the integrated ridesourcing and transit 

mode without considering other related modes that customers may choose, e.g., ridesourcing services 

alone (eithr single rides or shared rides) for an entire trip. Pinto et al. did consider multimodal whereas 

platform profit maximization or congestion effect was not considered (14). 
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In this paper, we aim to develop a modeling framework that is not only mathematically rigorous, 

but also captures the key behaviors and interactions of the major players when integrating ridesourcing 

with transit. To illustrate our approach, we focus on the morning commute, one of the most important 

daily trips, which also experiences the most congestion. We model fixed-route mass transit, such as light 

rail, subways, or bus rapid transit (BRT) on fixed schedules. As a result, there are three major players 

when integrating ridesourcing and transit services with CAVs: i) Customers who choose mobility services 

based on their values of time and other personal/social characteristics; ii) a ridesourcing platform 

providing both single ride and shared ride services, which usually serves customers and dispatches 

vehicles (CAVs) to maximize its profit; and iii) the route choices of CAVs that impact the overall 

network congestion. Clearly, the three players have distinct objectives; however, they interact with each 

other on the multimodal transportation network of an urban area, resulting in the use pattern of each travel 

mode and the overall network congestion. Therefore, understanding and modeling the behavior and the 

interactions of these three players are crucial to better integrate ridesourcing and transit and to evaluate 

their collective effect on the urban transportation system. 

A general equilibrium model on an integrated multimodal network is proposed to capture the 

behavior and interactions of the three players, which is sensitive to customers’ value of time and system 

congestion effects. Our model significantly extends the model in Ban et al. (6) to encompass shared rides 

and transit services under the CAV environment. The main contributions of this paper are:  

i) Develop methods to model the behavior of the three major players (customers, ridesourcing 

providers, CAV route choices) on a multimodal network, including the development of an extended 

network structure; 

ii) Formulate a general equilibrium model with single rides, shared rides, and integrated CAV 

ridesourcing and transit services, for which formal analysis can also be conducted including the existence 

and uniqueness of its solution, and solution methods; 

iii) Evaluate the network effect as a result of different CAV dispatching strategies, different 

values of time of customers, and different usage rates of transit. This may provide useful insights on 

developing policies to manage ridesourcing and to better integrate it with transit services. 

 

2. METHODS 

2.1 Problem statement 

Figure 1 (a) illustrates the morning commute scenario. There are four types of modes, 𝑚 ∈
{1,2,3,4}, which can serve commuters from their residential areas to the worksites: i) single rides from 

origin to destination, m=1; ii) shared rides that take passengers from two separate nearby locations from 

origin to destination, m=2. iii) single rides as the first mile then transfer to transit, m=3; iv) shared rides 

that take passengers from two separate locations as the first mile then transfer to transit, m=4. Single rides 

services and shared rides services are operated by the same ridesourcing platform. For simplicity, we refer 

to the four types of modes as taxi (m=1), ridesharing (m=2), Ttransit (m=3), RStransit (m=4); see Figure 

1 (b). A customer chooses a particular mode based on his/her value of time and other characteristics.  

+ public transit

+ public transit

Residential Area

(Origins)
4 Types of Modes

Destinations 

(Worksites)
            

(a) Morning commute scenario                                                             (b) Four types of modes 

Figure 1 Integrated multimodal network 
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Here we do not consider the mode where a commuter owns a CAV and drives alone to the 

worksite (i.e. the “solo driving” mode as defined in (6)), in order to better investigate the interaction 

between CAV ridesourcing and transit. Also the transit services considered here are mass transit with 

fixed routes/schedules (i.e. on-demand transit services are not considered), such as light rail, subway, or 

BRT, which usually run on separate right-of-way and thus have little or no contribution to vehicular 

traffic congestion. The proposed modeling framework may be extended to include solo driving, on-

demand transit, and street bus services, which we leave for future research. Also in practice, according to 

Li’s et al. (16), more than 90% of shared rides occur for two pickup locations. For the current study, 

therefore, we only consider shared rides in which a CAV picks up customers from (up to) two separate 

nearby locations. This is also consistent with the ridesplitting services in most ridesourcing platforms (e.g. 

Uber Pool). 

 

2.2 General equilibrium overview 

We propose a general equilibrium model with three modules (Figure 2). In the ridesourcing 

choice module, we maximize the revenue of the provider, the endogenous variable is the CAV dispatch 

(i.e. vehicle supply), while customer demand and route choice are exogenous variables. In the customer 

choice module, we minimize the disutility of customers, i.e., customers mode choices that provide them 

the highest utility. The decision variables are the demand of each mode with vehicle supply and route 

choices are the exogeneous variables. The network congestion module captures the flow interaction and 

congestion effect due to the choices and interaction of customers and service providers. We model the 

behavior of vehicles’ route choices according to Wardrop’s first principle, i.e., the CAVs always choose 

the route with the minimum travel time. The route choice is the decision variable, while demand and 

vehicle supply are exogenous variables. The three modules combine to form a general equilibrium model. 

Ridesourcing Choice

(Satisfy constraints)

Decision 

variable 

Exogenous 

variable 

vehicle supply route choice

Module I

demand

Customer Choice

(Satisfy constraints)

vehicle supply

route choice

Module II

demand

Network Congestion

vehicle supply

route choice

Module III

demand

Decision 

variable 

Exogenous 

variable 

Decision 

variable 

Exogenous 

variable 

(Satisfy constraints)

 

Figure 2 A summery of the general equilibrium model 

 

2.3 Extended network structure 

We construct an extended network of two layers to model the integared multimodal network, 

similar to but more concise compared to the method in Di and Ban (16). Figure 3 shows the extended 

structure for a small network. Figure 3 (b) is the ridesourcing layer, where node 5 is the vehicle 

destination for ridesourcing (m=1,2), and transit station node 4 is the vehicle destination for the 

ingegrated modes (m=3,4). For the transit layer (Figure 3 (a)), we define transit nodes 6 and 7, where 

node 6 has the same location with node 4 in the ridesourcing layer, and node 7 has the same location as 

node 5 (Figure 3 (c)). Vehicle flow is based on the ridesourcing layer, passenger flow is based on both 

layers. Recall that our model assumes that transit runs on separate right-of-way (e.g., subway or light rail; 

express routes for buses) and therefore does not interact with the ridesourcing layer when congestion is 

concerned. To simplify the discussion, in this paper, we only consider CAV ridesourcing serving the first 

mile of transit and thus assume customers’ destinations coincide with transit stations. Similar method can 

be applied to model the scenario where CAV ridesouring serves the last mile of transit when customers’ 

destinations are different from transit stations. The proposed model can also deal with multiple transit 

stations at the origins and/or at the destinations, although only one such station is shown (at the origins or 

at the destinations) in Figure 3 for illustration purposes. 
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Residential Area

(Origin Nodes)

Transit Station

Downtown

(Destination)

1

Residential Area

(Origin Nodes)
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(Destination)

2

36 4

57

1 2

3
4

5

6

7

Ridesourcing 

layer

Transit 

layer

 

(a) Transit layer                            (b) Ridesourcing layer                          (c) Two-layer network 

Figure 3 Extended network structure of the small network 

 

3 MODEL FORMULATION 

We define the following sets in our model: 𝑚 ∈ {1,2,3,4}, four types of modes, introduced in 

section 2.1; 𝑁, the set of nodes; 𝑂, the set of origins, where vehicles pick up passengers; 𝐷𝑣, the set of 

destinations of ridesourcing vehicles, where vehicles drop off all passengers and then head to the next 

pick-up location; 𝐷𝑐, the set of destinations of customers, which are the worksites; 𝐾 ∈ 𝑂 × 𝐷𝑐, the set of 

origin-destination (OD) pairs for customers; 𝑇, the set of transit stations, where customers of mode 3 or 4 

transfer to transit. In the model formulation, 𝑂𝑘 denotes the origin of an OD pair k, 𝐷𝑘
𝑣 denotes the vehicle 

destination of the OD pair k, 𝐷𝑘
𝑐 denotes the customer destination of the OD pair k, 𝑇𝑘 denotes the transit 

station of the OD pair k for mode 3 or 4. That is, vehicles and customers have different destinations for 

the integrated transit modes (m=3,4), but have the same destination if the whole trip is served by the 

ridesourcing modes (m=1,2). Here we define a mapping set 𝑀𝐴𝑃 ≔ {(𝑚,𝐷𝑣 , 𝐷𝑐), 𝑘 ∈ 𝐾|(1, 𝐷𝑘
𝑐, 𝐷𝑘

𝑐),
(2, , 𝐷𝑘

𝑐 , 𝐷𝑘
𝑐), (3, 𝐷𝑘

𝑣, 𝐷𝑘
𝑐), (4, 𝐷𝑘

𝑣, 𝐷𝑘
𝑐)} to connect the sets of customer destinations and CAV destinations 

of each mode. To illustrate these sets using the network in Figure 3, we have 𝑁 ≔ {1,2,3,4,5}, 𝑂
∶= {1,2,3}, 𝐷𝑣 ∶= {4,5}, 𝐷𝑐 ≔ {5}, 𝑇𝑘 ≔ {6}, 𝑀𝐴𝑃 ≔ {(𝑚,𝐷𝑣, 𝐷𝑐)|(1,5,5), (2,5,5), (3,4,5), (4,4,5)}.  

 

3.1 Ridesourcing choice module (Module I) 

The revenue of each shared-ride vehicle consists of the fixed fare of each passenger and the time- 

and distance-based fares. The fixed fare 𝐹𝑂𝑘
𝑚  and 𝐹𝑂𝑘′

𝑚 , are based on the locations of the origin nodes, 𝑂𝑘 

and 𝑂𝑘′ . Notice that although the vehicle takes detours to pick up passengers, the fare that passengers 

need to pay is based on the distance between their origins and the destination. Thus the time- and 

distance-based fares are formulated as 𝛼1
𝑚(𝑡𝑂𝑘𝐷𝑘 + 𝑡𝑂𝑘′𝐷𝑘) and 𝛼2

𝑚 (𝑑𝑂𝑘𝐷𝑘 + 𝑑𝑂𝑘′𝐷𝑘
), where 𝛼1

𝑚 is the 

time-based fare rate, and 𝛼2
𝑚 is the distance based fare rate. Notice here that for simplicity, we assume the 

two groups of passengers on a shared ride go to the same destination (i.e. the same transit stop or the same 

downtown worksite). The modeling method proposed here can be properly revised to incorporate the case 

when the two destinations are separate and close to each other. 

The cost of each shared-ride vehicle also includes time- and distance-based cost of the actual 

route taken, represented by 𝛽1
𝑚 (𝑡𝑗𝑂𝑘 + 𝑡𝑂𝑘𝑂𝑘′

+ 𝑡𝑂
𝑘′
𝐷𝑘) and 𝛽2

𝑚 (𝑑𝑗𝑂𝑘 + 𝑑𝑂𝑘𝑂𝑘′
+ 𝑑𝑂

𝑘′
𝐷𝑘), where 𝛽1

𝑚 is 

the time-based cost rate and 𝛽2
𝑚 is the distance-based cost rate. Since we specifically model CAVs, the 

time-based cost will be lower than it is for traditional taxis. However, if a vehicle takes longer than usual 

to finish a trip, it indicates less efficiency and lower customer satisfaction, which cause extra cost to the 

platform. In summary, the profit function of a shared-ride vehicle that drops off the previous passenger(s) 

at 𝑗 and then picks up passengers first at 𝑂𝑘 and then at 𝑂𝑘′ can be formulated as: 
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𝑅𝑗𝑘𝑘′
𝑚 = 𝐹𝑂𝑘

𝑚 + 𝐹𝑂𝑘′
𝑚 + 𝛼1

𝑚(𝑡𝑂𝑘𝐷𝑘 + 𝑡𝑂𝑘′𝐷𝑘)⏟            
𝑡𝑖𝑚𝑒 𝑏𝑎𝑠𝑒𝑑 
𝑟𝑒𝑣𝑒𝑛𝑢𝑒

+ 𝛼2
𝑚(𝑑𝑂𝑘𝐷𝑘 + 𝑑𝑂𝑘′𝐷𝑘)⏟            
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒

 − 𝛽1
𝑚(𝑡𝑗𝑂𝑘 + 𝑡𝑂𝑘𝑂𝑘′ + 𝑡𝑂𝑘′𝐷𝑘)⏟                  
𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑏𝑎𝑠𝑒𝑑 𝑐𝑜𝑠𝑡

−

𝛽2
𝑚(𝑑𝑗𝑂𝑘 + 𝑑𝑂𝑘𝑂𝑘′ + 𝑑𝑂𝑘′𝐷𝑘)⏟                  
𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 𝑐𝑜𝑠𝑡

    ∀𝑚 = 2,4 

 

Similarly, the profit of a single-ride vehicle that drops off the previous passenger(s) at j and then picks up 

passengers at 𝑂𝑘 and drop off passengers at destination 𝐷𝑘 can be formulated as:  

 

𝑅𝑗𝑘
𝑚 = 𝐹𝑂𝑘

𝑚 + 𝛼1
𝑚𝑡𝑂𝑘𝐷𝑘⏟    

𝑡𝑖𝑚𝑒 𝑏𝑎𝑠𝑒𝑑 
𝑟𝑒𝑣𝑒𝑛𝑢𝑒

+ 𝛼2
𝑚𝑑𝑂𝑘𝐷𝑘⏟      

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 
𝑟𝑒𝑣𝑒𝑛𝑢𝑒

− 𝛽1
𝑚(𝑡𝑗𝑂𝑘 + 𝑡𝑂𝑘𝐷𝑘)⏟          

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑏𝑎𝑠𝑒𝑑 𝑐𝑜𝑠𝑡

− 𝛽2
𝑚(𝑑𝑗𝑂𝑘 + 𝑑𝑂𝑘𝐷𝑘)⏟            

𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 𝑐𝑜𝑠𝑡

 ∀𝑚 = 1,3 

 

For 𝑚 = 1 or 2, commuters take single rides or shared rides to their actual destinations (e.g., in 

Figure 3, the drop-off location is node j=5); for 𝑚 = 2 or 4, commuters take single rides or shared rides 

to the transit stations (not their actual destinations), e.g., in Figure 3, the drop-off location is node j=4 

(the same as node 6 in the transit layer).  This needs to be properly modeled. 

The decision variables of the ridesourcing choice module are 𝑧𝑗𝑘𝑘′
𝑚  (where 𝑂𝑘  , 𝑂𝑘′ ∈ 𝑂) for 

shared-ride vehicles and 𝑧𝑗𝑘
𝑚 (where 𝑂𝑘 ∈ 𝑂) for single-ride vehicles. 𝑧𝑗𝑘𝑘′

𝑚  denotes the number of shared-

ride vehicles currently at destination 𝑗 and will next pick up customers first at 𝑂𝑘 and then at 𝑂𝑘′. 𝑧𝑗𝑘
𝑚 

denotes the number of single-ride vehicles currently at destination 𝑗 and will next pick up customers at 

𝑂𝑘. Although there are four different types of modes, the ridesourcing platform is only providing two 

types of services, either single rides or shared rides. Here we assume that for the same service, the 

platform has the same price strategies for the first-mile trips and whole trips. The objective function of 

Module I is to maximize the total profit from single-ride and shared-ride services: 

 

max
𝑧𝑗𝑘
𝑚≥0,𝑧

𝑗𝑘𝑘′
𝑚 ≥0,𝑞

𝑘𝑘′
𝑚 ,𝑏

𝑘𝑘′
𝑚
 ∑ 𝑅𝑗𝑘

𝑚𝑧𝑗𝑘
𝑚

𝑚=1,3⏟        
𝑠𝑖𝑛𝑔𝑙𝑒 𝑟𝑖𝑑𝑒

+ ∑ (𝑅𝑗𝑘𝑘′
𝑚 𝑧𝑗𝑘𝑘′

𝑚 − 𝜔𝑚 ⋅ |𝑞𝑘𝑘′
𝑚 | − 𝜔𝑚 ⋅ |𝑏𝑘𝑘′

𝑚 |)𝑚=2,4⏟                              
𝑠ℎ𝑎𝑟𝑒𝑑 𝑟𝑖𝑑𝑒

  

Subject to: 

Constraints for single rides, 𝑚 = 1,3:  

 ∑ 𝑧𝑗𝑘
𝑚

𝑗∈𝐷 ≥ 𝑄𝑘
𝑚    ∀ 𝑘 ∈ 𝐾    vehicle supply satisfies customer demand 

∑ 𝑧𝑗𝑘
𝑚

𝑘∈𝐾 = ∑ 𝑄𝑘′
𝑚

𝑘′: 𝑗=𝐷𝑘     ∀ 𝑗 ∈ 𝐷    vacant single-ride CAVs are avaible again to serve next trip 

Constraints for shared rides, 𝑚 = 2,4: 

∑ 𝑧𝑗𝑘𝑘′
𝑚

𝑗∈𝐷 − 𝑄𝑘,𝑘𝑘′
𝑚 = 𝑏𝑘𝑘′

+𝑚 − 𝑏𝑘𝑘′
+𝑚    ∀𝑘 ∈ 𝐾    shared vehicles pick up 2 customers in each trip 

∑ 𝑧𝑗𝑘𝑘′
𝑚

𝑗∈𝐷 − 𝑄𝑘′,𝑘𝑘′
𝑚 = 𝑞𝑘𝑘′

+𝑚 − 𝑞𝑘𝑘′
+𝑚    ∀𝑘 ∈ 𝐾    shared vehicles pick up 2 customers in each trip 

∑ 𝑧𝑗𝑘𝑘′
𝑚

𝑘,𝑘′∈𝐾 = ∑ ∑ 𝑄𝑘′,𝑘𝑘′
𝑚

𝑘′:  𝑗=𝐷𝑘′𝑘∈𝐾     ∀𝑗 ∈ 𝐷    vacant shraed-ride CAVs are avaible again  

Constraint for the total number of vehicles: 

∑ (∑ ∑ 𝑧𝑗𝑘
𝑚𝑡𝑗𝑂𝑘𝑗∈𝐷𝑘∈𝐾 + ∑ 𝑄𝑘

𝑚𝑡𝑂𝑘𝐷𝑘𝑘∈𝐾𝑚=1,3 )⏟                            
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑓𝑜𝑟 𝑠𝑖𝑔𝑙𝑒 𝑟𝑖𝑑𝑒

+

∑ (∑ ∑ 𝑧𝑗𝑘𝑘′
𝑚 𝑡𝑗𝑂𝑘𝑗∈𝐷𝑘,𝑘′∈𝐾 + ∑ 𝑄𝑘,𝑘𝑘′

𝑚 𝑡𝑂𝑘𝑂𝑘′𝑘,𝑘′∈𝐾 + ∑ 𝑄𝑘′,𝑘𝑘′
𝑚 𝑡𝑂𝑘′𝐷𝑘′𝑘,𝑘′∈𝐾 )𝑚=2,4⏟                                                  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑓𝑜𝑟 𝑠ℎ𝑎𝑟𝑒𝑑 𝑟𝑖𝑑𝑒

≤ 𝑁  

 

Here 𝑄𝑘
𝑚 is the demand of mode m along OD pair k. 𝑄𝑘𝑘′

𝑚  and 𝑄𝑘′𝑘
𝑚  are the demand of the fist pickups and 

second pickups of the shared ride services (m=3,4). As illustrated in Figure 2, customer demand variables 

are exogoneous to Module I.  

A mismatch occurs when shared rides fail to pick up 2 passengers from 2 different origin nodes. 

𝑞𝑘𝑘′
𝑚  and 𝑏𝑘𝑘′

𝑚  are defined to capture the mismatch of shared rides. There is no mismatch when both 𝑞𝑘𝑘′
𝑚  

and 𝑏𝑘𝑘′
𝑚  equals 0. 𝜔𝑚 is the rate of penalty, higher value means higher cost per mismatch. Constraints for 
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Module I ensure that: i) the number of vehicles dropping off customers at destination 𝑗 is equal to the 

number of vehicles departing from 𝑗; ii) each customer request is served ; iii) shared-ride vehicles can only 

pick up at most two passengers from up to two different origins, and penalization will be imposed if they 

only pack up passengers from only one location; iv) the number of vehicles in operation is no larger than 

the total number of vehicles operated by the platform.  

 

3.2 Customer choice module (Module II) 

Customers can choose to take rideshourcing to a transit station or directly to worksites. Thus, the 

customer flow is present on both the ridesourcing layer and the transit layer. When calculating the disutility 

of the shared-ride customers, either for the first mile or for the whole trip, there is a trade-off between 

precisely capturing the behavior of the customers and the feasibility of the model. For shared-ride trips, the 

first customer tends to have a longer ride time while the second customer tends to have a longer waiting 

time. But if the shared-ride trips benefit the first customer more than the second customer, it will be hard 

for the model to find a second customer so that the model is feasible. Thus, we simplify travel/waiting time-

based disutility so that two customers in the same shared-ride trip expect the same (and the worst case) 

disutility caused by the detour. The disutility of a shared-ride customer that is picked up first can be 

formulated as, 

 

𝑉𝑘𝑘′
𝑚 = 𝐹𝑂𝑘

𝑚
⏟
𝑓𝑖𝑥𝑒𝑑
𝑓𝑎𝑟𝑒

+ 𝛼1
𝑚𝑡𝑂𝑘𝐷𝑘⏟    

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
𝑏𝑎𝑠𝑒𝑑 𝑓𝑎𝑟𝑒

+ 𝛼2
𝑚𝑑𝑂𝑘𝐷𝑘⏟      

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑
𝑓𝑎𝑟𝑒

+ 𝛾1
𝑚(𝑡𝑂𝑘𝑂𝑘′

+ 𝑡𝑂𝑘𝐷𝑘)⏟            
𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 

𝑏𝑎𝑠𝑒𝑑 𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦

+ 𝛾2
𝑚𝑡𝑂𝑘𝑂𝑘′ +𝑤𝑘𝑘′

𝑚
⏟          
𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑑𝑢𝑒
𝑡𝑜 𝑤𝑎𝑖𝑡𝑖𝑛𝑔

+ 𝛾3
𝑚𝜆𝑘𝑘′

𝑚
⏟    

𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑑𝑢𝑒
𝑡𝑜 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

+

𝑇𝑟𝑘
𝑚     ∀𝑚 = 2,4 

 

Where 𝑂𝑘 is the first pick-up location, 𝑂𝑘′ is the second pick-up location. We have disutility due 

to the fare of the shared rides. 𝐹𝑂𝑘
𝑚  is the location-based fixed fare. The time-based fare 𝛼1

𝑚𝑡𝑂𝑘𝐷𝑘 and the 

distance-based fare 𝛼2
𝑚𝑑𝑂𝑘𝐷𝑘 depend only on the OD pair 𝑂𝑘 → 𝐷𝑘, which is reasonable because the 

additional disutility of shared rides is already considered in other terms. 𝛾1
𝑚 is the disutility rate for travel 

time. The travel time based disutility consists of the travel time of OD pair 𝑂𝑘 → 𝐷𝑘 and the travel time of 

detour 𝑂𝑘 → 𝑂𝑘′. 𝛾2
𝑚 is the waiting time disutility rate, 𝑤𝑘𝑘′

𝑚  is the waiting time based disutility from the 

previous drop off location to the first pick-up location. Thus the summation of  𝛾2
𝑚𝑡𝑂𝑘𝑂𝑘′ and 𝑤𝑘𝑘′

𝑚  captures 

the worest case waiting time, from the vehicle’s previous drop-off location j to the second shared-ride 

customer. The matching of the two customers in a shared ride is also regarded as the cost of the platform, 

which is modelled as the Lagrangian multiplier of the shared ride demand constriants in Module I, denoted 

as 𝛾3
𝑚𝜆𝑘𝑘′

𝑚 , where 𝛾3
𝑚 is the rate of matching cost and 𝜆𝑘𝑘′

𝑚  is the multiplier. See (6) for more discussions of 

why this multiplier could be regarded as (proportional to) the matching cost. The diutility of the second 

picked-up customer, 𝑉𝑘′𝑘
𝑚 , can be derived similarly, which is omitted here. 

We assume high capacity for the transit route 𝑇𝑘 → 𝐷𝑘, thus the travel time and distance are 

constant for the transit route. The travel time  and travel distance can be represented by the same 

parameter, 𝑡𝑇𝑘𝐷𝑘 ⋅ 𝑐𝑜𝑛𝑠𝑡 = 𝑑𝑇𝑘𝐷𝑘, The disutility of taking transit consists of the time/distance-based 

transit fare 𝛼3
𝑚𝑑𝑇𝑘𝐷𝑘, time/distance-based disutility 𝛾4

𝑚𝑑𝑇𝑘𝐷𝑘 and the transfer cost 𝛾5
𝑚. When 𝑚 = 1,2, 

ridesourcing vehicles serve the whole trip, so 𝑇𝑟𝑘
𝑚 = 0. Therefore the the disutility of transit is  

 

𝑇𝑟𝑘
𝑚 = 0    ∀𝑚 = 1,2 

𝑇𝑟𝑘
𝑚 = 𝛼3

𝑚𝑑𝑇𝑘𝐷𝑘⏟      
𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 𝑏𝑎𝑠𝑒𝑑 𝑓𝑎𝑟𝑒

+ 𝛾4
𝑚𝑑𝑇𝑘𝐷𝑘⏟      

𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑏𝑎𝑠𝑒𝑑 𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦

+ 𝛾𝑇𝑘𝐷𝑘
𝑚
⏟  

𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

     ∀𝑚 = 3,4 

 

Similar to shared rides, the disutility of a customer of a single ride trip can be formulated as, 
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𝑉𝑘
𝑚 = 𝐹𝑂𝑘

𝑚
⏟

𝑓𝑖𝑥𝑒𝑑 𝑓𝑎𝑟𝑒

+ 𝛼1
𝑚𝑡𝑂𝑘𝐷𝑘⏟    

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 
𝑏𝑎𝑠𝑒𝑑 𝑓𝑎𝑟𝑒

+ 𝛼2
𝑚𝑑𝑂𝑘𝐷𝑘⏟      

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑎𝑠𝑒𝑑 
𝑓𝑎𝑟𝑒

+ 𝛾1
𝑚𝑡𝑂𝑘𝐷𝑘⏟    

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
𝑏𝑎𝑠𝑒𝑑 𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦

+ 𝑤𝑘
𝑚

⏟
𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑑𝑢𝑒
𝑡𝑜 𝑤𝑎𝑖𝑡𝑖𝑛𝑔

+ 𝑇𝑟𝑘
𝑚    ∀𝑚 = 1,3 

 

Customer waiting time is calculated as the average deadhead miles from the previous destinations 

to the next origin (first origin for shared ride trips); see (6),  

 

𝑤𝑘
𝑚 = 𝛾2

𝑚
∑ 𝑧𝑗𝑘

𝑚𝑡𝑗𝑂𝑘𝑗∈𝐷

∑ 𝑧𝑗𝑘
𝑚

𝑗∈𝐷
    ∀𝑘 ∈ 𝐾,𝑚 = 1,3 

𝑤𝑘𝑘′
𝑚 = 𝛾2

𝑚
∑ 𝑧𝑗𝑘𝑘′

𝑚 𝑡𝑗𝑂𝑘𝑗∈𝐷

∑ 𝑧𝑗𝑘𝑘′
𝑚

𝑗∈𝐷
    ∀𝑘, 𝑘′ ∈ 𝐾,𝑚 = 2,4 

 

The decision variable for Module II is the customer demand. The customer demand for single rides 

is 𝑄𝑘
𝑚. The customer demand for shared rides are 𝑄𝑘𝑘′

𝑚  and 𝑄𝑘′𝑘
𝑚  for the first pick-up and second pick-up, 

respectively. The objective function minimizes the disutility of customers: 

 

min
𝑄
𝑘′𝑘
𝑚 ,𝑄

𝑘𝑘′
𝑚 ,𝑄𝑘

𝑚
      ∑ 𝑉𝑘

𝑚𝑄𝑘
𝑚

𝑚=1,3 + ∑ 𝑉𝑘𝑘′
𝑚 𝑄𝑘𝑘′

𝑚
𝑚=2,4 + ∑ 𝑉𝑘′𝑘

𝑚 𝑄𝑘′𝑘
𝑚

𝑚=2,4    

Subject to: 

∑ 𝑄𝑘
𝑚4

𝑚=1 = 𝑄𝑘    ∀𝑘 ∈ 𝐾     

∑ (𝑄𝑘′𝑘
𝑚 + 𝑄𝑘𝑘′

𝑚 )𝑘′∈𝐾 = 𝑄𝑘
𝑚    ∀𝑚 = 2,4, 𝑘 ∈ 𝐾    

 

The constraints for Module II ensure that: i) the customers requesting different types of modes sum 

up to the total amount of the travel demand; ii) the customers taking shared rides along OD pair 𝑂𝑘 → 𝐷𝑘 

is equal to the summation of 𝑂𝑘 as the first and second pick up location from all shared-ride trips. The 

above module is to minimize the total disutility of all customers. Since 𝑉𝑘
𝑚, 𝑉𝑘𝑘′

𝑚 , 𝑉𝑘′𝑘
𝑚  are all exogeneous 

to Module II (as they are independent of 𝑄𝑘
𝑚, 𝑄𝑘′𝑘

𝑚 , 𝑄𝑘𝑘′
𝑚 ), our formulation ensures that each customer 

chooses the mode with the least disutility. An analogy to this is that the shortest path search problem on a 

transportation network can be reformulated to a linear program to minimize the total cost of all users of the 

network; more discussions on this can be found in (6). 

 

3.3 Network congestion module (Module III) 

Because we only consider the congestion effect of ridesorucing services, Module III is based on 

the ridesourcing layer. There are three types of network flow: i) deadhead miles, i.e., the distance CAVs 

travel from drop-off locations to the next pick up locations, which apply to both single rides and shared 

rides; ii) detours, when CAVs are occupied by only the first group of shared ride customers to pick up the 

second group of customers, which only apply to shared rides; iii) occupied trips, when a CAV travels 

from the final pick-up location to the destination, which apply to both single rides and shared rides. The 

following equations show how the three types of flow can be calculated. 

 

(i) Deadhead miles: ∑  𝑧𝑗𝑘
𝑚𝑡𝑗𝑂𝑘𝑚=1,3 +∑ ∑  𝑧𝑗𝑘𝑘′

𝑚
𝑘′𝑚=2,4 𝑡𝑗𝑂𝑘  

(ii) Detours: ∑ ∑ 𝑄𝑘𝑘′
𝑚

𝑘′∈𝐾𝑚=2,4 𝑡𝑂𝑘𝑂𝑘′  

(iii) Ocuppied trips: ∑ 𝑄𝑘
𝑚𝑡𝑂𝑘𝐷𝑘𝑚=1,3 + ∑ ∑ 𝑄𝑘′𝑘

𝑚 𝑡𝑂𝑘𝐷𝑘𝑘′∈𝐾𝑚=2,4   

 

For each type of flow, we could formulate it as complimentary conditions to ensure that the route 

choice follows the Wardrop’s principle. This is similar to (6) and details are omitted here. Now that we 

have the full formulation of the general equilibrium model, consisting of the three optimization problems 

from Module I-III, one for each of the major players. We can derive the KKT conditions of the three 

optimization problems and reformulate the general equilibrim model to a mixed complimentarity 
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problem (MCP). We have studied and established the solution existence and unique conditions to such a 

formulation, using similar methods as reported in (6). We omit the details here due to space limitations. 

 

4. NUMERICAL EXPERIMENTS  

We solve the general equilibrium model (an MCP) using the PATH solver in GAMS. Sensitivity 

analysis is conducted on a small network and the Sioux Falls network. Due to space limitations, we omit 

the results of the Sioux Falls network in this paper. When conducting the sensitivity analysis, we first set 

the baseline values for all parameters; we then either unilaterally changing one parameter at a time or 

changing two parameters at the same time to see how customer’s mode choice and the overall network 

congestion react to the change of the parameters.  

The link properties of the small network (Figure 3) are shown in Table 1. The demand from node 

1-3 to destination node 5 is 40, 40, 40, respectively. Table 2 lists the basedline parameters. Essentially, 

parameters for all single ride vehicles are the same, either for whole trips or first mile trips. We set the 

single-ride parameters for mode 1,3 to the same values, e.g., 𝛼1
1 = 𝛼1

3. Similarly, we set the shared-ride 

parameters for mode m=2,4 to the same values, e.g., 𝛼1
2 = 𝛼1

4. These parameters are utility terms. The 

relative value of a parameter for different modes measures the relative cost of the modes or the relative 

value of time of customers. The baseline parameter setting in Table 2 depicts the scenario when the fare 

of the services follows the relation: single ride > shared ride > transit, and customers inconvenience cost 

follows the relation: shared ride > single ride. When conducting the sensitivity analysis later in this 

section,  we may change some of the baseline parameters. 

  

TABLE 1 Parameter of the small network 

Link  
Fro

m  
To  

Length 

(mile) 

FFT 

(h) 

Capa

city 

 
Link  From To  

Length 

(mile) 

FFT 

(h) 

Capa

city 
1 1 2 0.4 0.02 40  11 4 2 1.8 0.06 60 

2 1 3 0.5 0.025 40  12 4 3 1.8 0.06 60 

3 1 4 2.1 0.07 60  13 2 5 10 0.5 100 

4 2 1 0.4 0.02 40  14 3 5 11 0.55 100 

5 2 3 0.6 0.03 40  15 4 5 9 0.45 120 

6 2 4 1.8 0.06 50  16 5 2 10 0.5 100 

7 3 1 0.5 0.025 40  17 5 3 11.5 0.55 100 

8 3 2 0.6 0.03 40  18 5 4 9 0.45 120 

9 3 4 1.8 0.06 50  19 6 7 9 ---- ---- 

10 4 1 2.1 0.07 60        

   

TABLE 2 Baseline parameters 

Illustration of parameters 
Notation (m 

=1,2,3,4)  
Value 

The fixed fare for different modes ($) 𝐹𝑚 5, 2.9, 5, 2.9 

Time-based fare rate ($/h) 𝛼1
𝑚 4.1, 1.2, 4.1, 1.2 

Distance-based fare rate ($/mile) 𝛼2
𝑚 1.5, 1.7, 1.5, 1.7 

Conversion factor from time to cost ($/h) 𝛽1
𝑚 7, 2.6, 7, 2.6 

Conversion factor from distance to cost ($/mile) 𝛽2
𝑚 1, 1.1, 1, 1.1 

Value of time of customers, while traveling ($/h) 𝛾1
𝑚 2, 2.7, 2, 2.7 

Value of time of customers, while waiting ($/h) 𝛾2
𝑚 3, 4.2, 3, 4.2 

Value of time of customers, whilce mathing in shared rides ($) 𝛾3
𝑚 (m=2,4) NA, 2.5, NA, 2.5 

Travel distance-based fare rate of transit ($/h) 𝛼3 0.37 

Conversion factor from distance to cost for transit ($/mile) 𝛾4 0.22 

Transfer cost of transit ($/transfer) 𝛾5 1.1 
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4.1 Results of unilaterally changing one parameter 

Table 3 shows the results when we unilaterally change the travel distance based fare rate of 

single rides or shared rides. Under the current baseline parameter setting (Table 2), the demand for 

serving the whole trip using ridesourcing (𝑚 = 1,2) is always zero, indicating that customers prefer the 

integrated modes that contain both ridesourcing and transit. Compared with Ttransit, RStransit saves more 

VMT, thus higher demand of RStransit corresponds to lower VMT and vehicle hours traveled (VHT). 

When we unilaterally increase the distance-based fare rate of single rides (𝛼2
1 = 𝛼2

3), the cost of 

requesting Ttransit increases, thus the demand for Ttransit decreases while the demand for RStransit 

increases. When we unilaterally increase the distance-based fare of shared ride (𝛼2
2 = 𝛼2

4), the demand of 

RStransit decreases while the demand of Ttransit increases. This example shows when we increase the 

cost parameter related to a particular mode (which represents certain cost/disutility of selecting the mode), 

customer choice of that mode will decrease, and the VMT and VHT of the entire network will also 

change accordingly.  

 

TABLE 3 Unilaterally change 𝜶𝟐
𝟏 or 𝜶𝟐

𝟐 

𝜶𝟐
𝟏 = 𝜶𝟐

𝟑 𝜶𝟐
𝟐 = 𝜶𝟐

𝟒 Taxi, m=1 
Ridesharing, 

m=2 

Ttransit, 

m=3 

RStransit, 

m=4 

VMT 

(miles) 

VHT 

(h) 
1.45 

1.73 

0% 0% 100% 0% 455.90 0.28 

1.47 0% 0% 70% 30% 393.14 0.24 

1.53 0% 0% 33% 67% 316.00 0.20 

1.85 0% 0% 21% 79% 294.69 0.18 

1.93 0% 0% 0% 100% 258.00 0.16 

Value 

here?? 

1.19 0% 0% 23% 77% 298.36 0.18 

2.12 0% 0% 46% 54% 342.05 0.21 

2.13 0% 0% 73% 27% 399.96 0.25 

2.18 0% 0% 90% 10% 434.37 0.27 

2.20 0% 0% 100% 0% 456.00 0.28 

 

When we unilaterally change the waiting time cost parameter for single rides (𝛾2
1), modes 1,3,4 

have non-zero demand (Table 4). When we increase 𝛾2
1, the cost of both taxi and Ttransit increases. As a 

result, the demand of taxi and Ttransit decreases while the demand of RStransit increases.  

 

TABLE 4 Unilaterally change 𝜸𝟐
𝟏  

𝜸𝟐
𝟏 = 𝜸𝟐

𝟑 Taxi, m=1 
Ridesharing, 

m=2 

Ttransit, 

m=3 

RStransit, 

m=4 

VMT VHT 

1.75 33% 0% 67% 0% 1149.57 0.89 

1.79 24% 0% 58% 18% 927.45 0.70 

1.81 18% 0% 51% 31% 763.75 0.57 

1.83 8% 0% 42% 50% 521.50 0.36 

1.85 2% 0% 35% 63% 359.27 0.23 

 

Table 3-4 describe the simplest case for the sensitivity analysis. The mode split pattern is not 

always intuitively predictable, especially when three or more types of modes have non-zero demand 

simultaneously. Table 5 summarizes the results when unilaterally change the transfer cost parameter of 

transit (𝛾5). When the transfer cost of transit increases, it is intuitive that the demand of RStransit 

decreases. However, the demand of Ttransit increases despite the increased transit cost. In fact, there is a 

demand increase in both of the single-ride modes, i.e., taxi and Ttransit. Remember that under 

equilibrium, a customer always chooses the mode with the lowest disutility. Under the current parameter 

setting, the fare of single rides is higher than shared rides. The cost of the integrated modes (m=3,4) is the 
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sum of the cost of the first-mile cost and the transit cost. Therefore, the transit cost takes up higher 

percentage of the total cost of RStransit compared with Ttransit. When we increase the cost of transit, the 

disutility of choosing RStransit increases a lot. Since RStransit is no longer a low-cost option for many 

customers, its demand decreases. In comparison, the transit cost only takes up a small portion of the 

disutility of choosing Ttransit. Therefore, when we increase the transit transfer cost, the disutility of 

choosing Ttransit only increases a little bit. Compared with RStransit, Ttranist is still the lower cost 

option for many customers. Thus more customers choose Ttransit. However, if we further increase the 

transfer cost of transit, no one chooses the integrated mode (m=3,4), and customers only choose taxi or 

ridesharing instead for the entire trip. 

  

TABLE 5 Unilaterally change 𝜸𝟓 

𝜸𝟓 
Taxi, 

m=1 

Rideshari

ng, m=2 

Ttransit, m=3 RStransit, 

m=4 

VMT VHT 

1.265 0% 0% 33% 67% 316.00 0.20 

1.315 11% 0% 44% 45% 583.57 0.42 

1.375 24% 0% 58% 18% 924.96 0.70 

1.43 33% 0% 67% 0% 1149.57 0.89 

8.00 33% 67% 0% 0% 1720.70 1.47 

 

4.2 Results of changing two parameters at the same time 

To better show how different mode choices may impact VMT, we compare the VMT of a certain 

mode split scenario to the case when all customers drives their private vehicle to work (i.e. all are solo 

driving). When all customers choose solo driving (no ridesourcing or transit involved), the VMT is equal 

to 1266.11 vehicle miles based on the UE solution. Thus the VMT change can be calculated as: 

𝑉𝑀𝑇 𝑐ℎ𝑎𝑛𝑔𝑒 =  (𝑉𝑀𝑇 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 1266.11)/1266.11  

VMT change is a better indicator of congestion level compared with the  absolute value of VMT. When 

VMT change is positive, it indicates that there are deadhead miles traveled, which make the congestion 

level higher than the solo driving scenario. When VMT change is negative, it implies that some customers 

choose transit or shared rides, so that the network is less congested than the solo driving scenario. 

Figure 4 shows the results when we change the time-based disutility rate for shared ride (𝛽1
2 =

𝛽1
4) and the transfer cost of transit (𝛾5) at the same time. The demand of single rides is zero. Customers 

choose between ridesharing amd RStransit. Since the demand of ridesharing and RStransit sum up to 1, 

we only show the demand pattern of ridesharing (Figure 4 (a)). Figure 4 is divided into 2 regions, with 

the top part as the high ridesharing demand region, and the bottom part as the high RStransit region. 

When 𝛾5 increases, the cost of taking transit increases, thus the demand of RStransit decreases and the 

demand of ridesharing increases. When 𝛽1
2 increases and the transit parameter 𝛾5 ≈ 0.3, the cost of 

ridesharing increases, thus the demand of RStransit increases while the demand of ridesharing decreases. 

When customers only choose between ridesharing and RStransit, the demand pattern is mainly affected 

by transit parameter 𝛾5. When 𝛾5 ∈ [0.25,0.48], the ridesharing parameter also affects the demand 

pattern. VMT change is consistent with the mode split pattern. VMT gets higher when more customers 

switch from RStransit to ridesharing. 
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(a) Percentage of Demand of ridesharing (m=2)                  (b) VMT change 

Figure 4 Sensitivity analysis of changing 𝜷𝟏
𝟐 (𝜷𝟏

𝟐 = 𝜷𝟏
𝟒) and 𝜸𝟓 

 

When more than 2 types of modes have non-zero demand, the mode split pattern can be more 

complex. Figure 5 shows the results of changing the distance-based fare rate of shared ride (𝛼2
2 = 𝛼2

4) 
and the travel distance-based cost of transit (𝛼3). The demand of Ttransit is always zero. Customers 

choose among the other three modes: taxi, ridesharing and RStransit. There are five mode split patterns, 

marked in Figure 5 (a)-(b). The demand and VMT change of these five mode split patterns are 

summarized in Table 6. Along the boundary of different mode split patterns, the demands of different 

modes change gradually, shown by the zoom-in version of the boundaries (Figure 5 (a)-(b)). Mode split 

pattern ① lies in the region where the transit parameter is low, 𝛼3 < 0.1. The disutility of taking transit is 

low, all customers choose RStransit. Mode split patterns ②-⑤ roughly divide the space of transit 

parameter and ridesharing parameter into four quadrants. Mode split pattern ② takes place in the right 

bottom quadrant, where transit parameter 𝛼3 < 0.64, shared ride parameter 𝛼2
2 is large. Compared with 

pattern ①, transit cost and shared-ride cost are higher in ②. Thus 33% customers switch from RStransit 

to taxi. Mode split pattern ③ lies next to ②, with smaller shared-ride cost parameter. As a result of the 

decreased shared-ride cost, we see ridesharing demand increases to 67%, taxi demand drop to zero. 

Compared with ②, mode split ③ also has higher transit cost parameters, thus the transit use decreases to 

33%. Mode split ③ has lower VMT compared to ②, since no one request taxi ride in ③. The mode split 

pattern ④ and ⑤ can be explained in a similar manner. From this example, we can see that the mode 

split in the integrated multimodal network has complex patterns. Especially in the era of CAVs, when the 

operations of vehicles are highly coordinated, it will be even more important to study the customers’ 

mode choice systematically. The VMT change in Figure 5 (d) are consistent with the mode split pattern 

in Figure 5 (a) – (c). The relation between mode split and VMT change is further disccussed in the 

following section. 
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(a) Demand of taxi (m=1)                                     (b) Demand of ridesharing (m=2) 

    
      (c) Demand of RStransit (m=4)                             (d) VMT change 

Figure 5 Sensitivity analysis of changing 𝜶𝟐
𝟐 (𝜶𝟐

𝟐 = 𝜶𝟐
𝟒) and 𝜶𝟑 

 

TABLE 6 Summary of the mode split patterns in Figure 5 

Mode split pattern Taxi Ridesharing Ttransit RStransit VMT change 

① 0% 0% 0% 100% -80% 

② 33% 0% 0% 67% -25% 

③ 0% 67% 0% 33% -30% 

④ 0% 100% 0% 0% 1% 

⑤ 33% 67% 0% 0% 33% 

 

4.3 Model choices versus VMT change 

Figure 6 (a) – (d) show the relation between the demand (expressed in terms of the percentage of 

the total demand) of a particular mode 𝑚 ∈ {1,2,3,4} and the VMT change. The plots are generated by 1) 

randomly changing all the model parameters (and thus the mode choices of customers and the resulting 

VMT of the network); and 2) showing the percentage of the demand m and the VMT change. For a given 
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demand percentage of a mode, for example ridesharing (Figure 6 (b)), customers may choose among the 

other three modes depending on the actual parameter combinations, resulting in different mode choices 

and different levels of VMT changes. Therefore, the relation between ridesharing demand and VMT 

change is scattered and forms a triangular region – the variations of mode splits and VMT changes reduce 

as the demand percentage of ridesharing increases which diminish when the demand percentage is 100% . 

Similar patterns can be found for the other three modes. Further examinzation of the plots and results 

reveal that the upper boundary and lower boundary of each plot in Figure 6 (a) – (d) captures the cases 

when exactly 2 modes are selected. For example, in Figure 6 (d), along the upper boundary, customers 

choose between taxi and RStransit, while the demand for ridesharing or Ttransit is zero. Thus, the VMT 

change starts at the corner case of all customers choosing taxi (VMT change = 100%), ends at the corner 

case of all customers choosing RStransit (VMT change≈ −80%). Along the lower boundary in Figure 6 

(d), customers choose between Ttransit and RStransit while the demand for taxi or ridesharing is zero. 

The VMT change starts at the corner case of all customers choosing Ttransit (VMT change≈-64%), ends 

at the coner case of all customers choosing RStransit (VMT change≈ −80%). The data points within the 

triangular region are cases when 3 or more types of modes are selected.  

We can further show the corner cases (i.e. when customers only choose one of the four modes) in 

Figure 6(e). The plot shows that RStransit save the most VMT: VMT decreases by 80% compared with 

solo driving when all customers choose RStransit. One the other hand, Ttransit reduces VMT by 64%, 

ridesharing has similar VMT with solo driving, taxi causes the most congestion with 100% VMT increase 

due to deadhead miles.  

                        
(a) Demand of taxi (m=1)                                                           (b) Demand of ridesharing (m=2) 

      
(c)  Demand of Ttransit (m=3)                                                    (d) Demand of RStransit (m=4) 

 
      (e) Summary of corner cases 

Figure 6 Demand versus VMT change 
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DISCUSSIONS  

 In the numerical experiments in section 4, we change the parameters of the four modes, including 

the fixed fare, time-/distance based fare, time-/distance based disutility, customer waiting time cost, 

transfer cost, and matching cost. In reality, customers choose one mode over another based on various 

factors. By setting different parameters, we can better reveal customers’ mode choices. It is intuitive that 

when we increase the parameter (representing certain cost) of a mode, fewer customers will choose that 

mode. Our results can capture this properly (Table 3-4).  The proposed model can also capture more 

complex scenarios due to the interactions of different modes. For example, when we change the 

parameters of transit, the disutility of both Ttransit and RStransit changes. When we change the 

parameters of shared rides, the disutility of both ridesharing and RStransit changes. This resembles the 

interactions of ridesourcing company and transit agencies in practice. When a ridesoucing company 

changes the price of its shared-ride service, it may affect ridesharing and RStransit differently. Similarly, 

the disutility due to transit tranfer may change when the transit company make changes to its routes, 

stops, schedules, and fare. The increased transfer cost of taking transit may affect Ttransit and RStransit 

differently. Therefore, when there are changes to the parameters of transit and shared rides, how 

customers exactly react to such changes can be quite complex, which can be captured by the model 

proposed in this paper as shown in Tables 3-5 and Figures 4-5.  

On the other hand, different mode splits (resulted from customers’ mode choices) may lead to 

varied VMT changes (compared with all customers solo driving). Numerical experiments (Figure 6(e) in 

particular) show that higher usage of transit or shared rides reduces the VMT. Shared ride alone without 

transit (i.e. the ridesharing mode (m=2) in this paper) may still lead to slightly higher VMT compared 

with solo driving due to the deadhead miles. The results thus clearly illustrate the important role of transit 

in serving commuters in urban areas. Even we only consider fixed route, fixed schedule mass transit 

(which are reviewed as less efficient compared with on-demand transit) in this paper, the numerical 

results show that if all customers choose to use transit, the VMT reduction can be tremendous: 64% if the 

first mile is served by single rides (for Ttransit) or 80% if the first mile is served by shared-rides (for 

RStransit), as shown in Figure 6 (e). The numerical results in Section 4 are for the morning commute 

where travel demands are extremely asymmetric, i.e., all demands are from the residential areas to the 

worksites. This also explains why the VMT changes are large in general, from 80% reduction (RStransit 

only) to 100% increase (Taxi only). For more symmetric demand patterns, we expect the VMT changes 

are milder; see (6). However, we believe that the general trend of the changes should be the same.  

 Our proposed model can thus help provide insights to transit agencies and ridesoucing companies 

for making sensible policies related to their operations and for the potential collaboration on integrated 

ridesourcing and transit system. The ability to capture the network-wide congestion effect is also a 

highlight of the model since the evalution of the congestion level in a multimodal network is important 

especially CAVs are widely deployed.  

 

CONCLUSIONS 

The era of CAV may bring about a significant reduction in car ownership. This paper envisions a 

morning commuting scenario when there is one ridesourcing platform operating all the vehicles, 

providing single- or shared- ride services for commuters. CAVs can either send customers to their 

worksites or send customers to transit stations to take transit to the worksites. This resulted in four modes 

for a customer to choose: taxi, ridesharing, Transit and RStransit. We modeled the value of 

time/inconvenience of customers as an overall disutility by choosing a mode, encompassing various 

factors such as distance, waiting, matching, transfer and the fare of the mode. At equilibrium, the 

ridesourcing company maximizes its profit, each customer chooses the mode with the lowest disutility, 

and the vehicular flow is assigned to the network routes based on the Wardrop’s first principle, revealing 

the network congestion. The proposed model captures the behavior and interactions of the ridesoucing 

platform and the customers and can assess the congestion level of the network. Future studies should test 

the proposed model on large, real world networks and extend the current model to include other 

ridesourcing modes such as on-demand transit (i.e. microtransit) and bikeshare services. 
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